Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 442, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602562

RESUMO

The Burabay State National Natural Park is a national park of the great natural and historical values located in the north of Kazakhstan, which has been exposed in recent years to significant anthropogenic impact. The moss biomonitoring was performed in the Borovoye resort community, an important tourist destination in the national park, to identify the level of air pollution. Mosses collected at 29 locations were subjected to neutron activation analysis to determine 36 elements and additionally to ICP-OES to detect the level of Cu and Pb. Factor analysis was applied to check if there are any associations between identified elements and to link them with possible emission sources. According to contamination factor and pollution load indices the investigated area belongs to three classes of pollution: unpolluted, suspected and moderate. Potential ecological risk index calculated for selected elements revealed harmless risk to human health. The level of element obtained in Burabay State National Natural Park was compared with the data available for other national parks.


Assuntos
Poluição do Ar , Briófitas , Humanos , Biomarcadores Ambientais , Parques Recreativos , Cazaquistão , Monitoramento Ambiental
2.
Arch Environ Contam Toxicol ; 86(2): 152-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329491

RESUMO

Active moss biomonitoring, the so-called moss bag technique, widely applied in many countries, for the first time, was applied to assess the air quality in Ulaanbaatar (Mongolia). Moss bags with Sphagnum girgensohnii Russow were exposed in triplicate in three different periods: December-February, March-May, and December-May at 13 governmental air quality monitoring stations located in the vicinity of thermal power plants and residential areas. The plant tissue content of Al, Ba, Co, Cd, Cr, Cu, Fe, Mn, P, Pb, Sr, S, V, As, and Zn was determined using inductively coupled plasma-optical emission spectrometry, and a direct mercury analyzer was used to determine the Hg content. The samples in residential areas and near thermal power plants that were exposed for 3 months in winter and for 6 months (winter to spring) were characterized by the highest accumulation of the elements. In the moss bags exposed during spring, maximum accumulation of the determined elements was noted in residential areas and near main roads. Regardless of the exposure time and duration, the highest accumulation of Al, Fe, and V was determined at Dambadarjaa air quality station located near a highway and of Hg near the Amgalan power plant. Significant differences in element accumulation between seasons were observed, thus, the accumulation of Al, Ba, As, Co, Cr, Fe, Pb, V, and Zn was higher in spring, while P and S had higher content in the moss samples exposed during winter. The accumulation of elements over the 6-month exposure period was 1.1-6.7 times higher than that of the 3-month periods. Thus, the 6-month exposure can be considered a reliable deployment period as it ensures an adequate signal in terms of enrichment of pollutants. Factor analysis was applied to highlight the association of elements and to link them with possible sources of emission. Three factors were determined, the first one included Al, As, Ba, Co, Cr, Fe, Mn, Pb, Sr, and V and was identified as a geogenic-anthropogenic, the second (Cu, P, and S) and third (Cd and Zn) factors suggested anthropogenic origin. The Relative accumulation factor and enrichment factor were calculated to evaluate the level of air pollution and possible element sources. Considerable contributors to air pollution were Zn, Fe, As, V, Cr, and Al, which may originate from airborne soil particles of crustal matter or transport, as well as coal combustion for heating and cooking.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Briófitas , Mercúrio , Metais Pesados , Poluentes Atmosféricos/análise , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Briófitas/química , Poluição do Ar/análise , Mercúrio/análise , Metais Pesados/análise
3.
Nanomaterials (Basel) ; 13(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836339

RESUMO

Terbium is a rare-earth element with critical importance for industry. Two adsorbents of different origin, In2O3 nanoparticles and the biological sorbent Arthrospira platensis, were applied for terbium removal from aqueous solutions. Several analytical techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy, were employed to characterize the adsorbents. The effect of time, pH, and terbium concentration on the adsorption efficiency was evaluated. For both adsorbents, adsorption efficiency was shown to be dependent on the time of interaction and the pH of the solution. Maximum removal of terbium by Arthrospira platensis was attained at pH 3.0 and by In2O3 at pH 4.0-7.0, both after 3 min of interaction. Several equilibrium (Langmuir, Freundlich, and Temkin) and kinetics (pseudo-first order, pseudo-second order, and Elovich) models were applied to describe the adsorption. The maximum adsorption capacity was calculated from the Langmuir model as 212 mg/g for Arthrospira platensis and 94.7 mg/g for the In2O3 nanoadsorbent. The studied adsorbents can be regarded as potential candidates for terbium recovery from wastewater.

4.
Environ Res ; 238(Pt 1): 117137, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714364

RESUMO

The moss-bag technique has been used for many decades to monitor outdoor pollution. More recently, however, the method has been used to monitor indoor air pollution (IAP), as humans spend the majority of their time indoors. The purpose of the research conducted was to evaluate indoor air pollution using active moss biomonitoring. Pleurozium schreberi moss bags were exposed for two seasons (summer and winter), hanging over tile stoves and coal stoves. The selected elements: Al, Cu, Cd, Co, Pb, Zn, V, Ba, Cr, Fe, Mn, Sr, P, Ni, and S were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and, for Hg, by a direct mercury analyzer. The study found the exposure season affected the concentrations of selected elements in 62.5% of cases, and their source was identified. The average concentrations of Co, Ba, Cr, and Sr were higher, and statistically significant, in winter, after a 12-week exposure period of the mosses, regardless of the type of heating or cooking stove owned. The higher phosphorus concentrations obtained in summer indicate physiological stress caused by unfavorable winter exposure conditions. In the future, the number of species used to assess indoor air pollution should be increased and the range of pollutants expanded, along with the identification of their sources, taking residents' lifestyles into account.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Briófitas , Mercúrio , Metais Pesados , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Briófitas/química , Poluição do Ar em Ambientes Fechados/análise , Poluição Ambiental , Metais Pesados/análise
5.
Mar Pollut Bull ; 194(Pt B): 115346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536080

RESUMO

The Dispersal profile of the radioisotopes (226Ra, 232Th, 235U, 40K, 137Cs) along with potentially toxic elements (Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Hg) in the sediments around the Novaya Zemlya was determined. The task was fulfilled with the aid of HPGe gamma spectrometry, inductively coupled plasma optical emission spectroscopy, DMA-80 Direct Mercury Analysis System, X-ray diffraction and statistical tools. At most of the locations, the radionuclides activity was higher than the world average activity concentration for the respective nuclei, 40K being the most abundant. From all the potentially toxic elements detected, Cr and Ni were usually observed on higher levels compared to their background values, indicating the probability of the detrimental biological effects. Thus, the present situation at the studied area might be a threat to the neighboring marine life.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Metais Pesados/análise , Mercúrio/análise , Espectrometria gama , Sedimentos Geológicos/química , Medição de Risco , China , Poluentes Químicos da Água/análise
6.
Microorganisms ; 11(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37630569

RESUMO

Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater.

7.
Nanomaterials (Basel) ; 13(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299657

RESUMO

The application of metal nanoparticles in industry and medicine results in their release into the environment, which can have a negative impact on human health. The effects of gold (AuNPs) and copper (CuNPs) nanoparticles at the concentration range of 1-200 mg/L on parsley (Petroselinum crispum) under conditions of root exposure and their translocation in roots and leaves were investigated in a 10-day experiment. The content of copper and gold in soil and plant segments was determined using ICP-OES and ICP-MS techniques, while the morphology of nanoparticles was analyzed using transmission electron microscopy. Differences in the nanoparticle uptake and translocation were observed: CuNPs mainly accumulated in soil (4.4-465 mg/kg), while accumulation in the leaves were at the control level. AuNPs mainly accumulated in soil (0.04-108 mg/kg), followed by roots (0.05-45 mg/kg) and leaves (0.16-53 mg/kg). The influence of AuNPs and CuNPs on the biochemical parameters of parsley was on the content of carotenoids, the levels of chlorophyll, and antioxidant activity. Application of CuNPs even at the lowest concentration led to a significant reduction in carotenoids and total chlorophyll content. AuNPs at low concentrations promoted an increase in the content of carotenoids; however, they also significantly reduced it at concentrations higher than 10 mg/L. To our knowledge, this is the first study of the effect of metal nanoparticles on parsley.

8.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240304

RESUMO

The influence of gold nanoparticles after their prolonged oral administration to mice (during pregnancy and lactation) on spatial memory and anxiety levels in offspring was investigated. Offspring were tested in the Morris water maze and in the elevated Plus-maze. The average specific mass content of gold which crossed the blood-brain barrier was measured using neutron activation analysis and constituted 3.8 ng/g for females and 1.1 ng/g for offspring. Experimental offspring showed no differences in spatial orientation and memory compared to the control, while their anxiety levels increased. Gold nanoparticles influenced the emotional state of mice exposed to nanoparticles during prenatal and early postnatal development, but not their cognitive abilities.


Assuntos
Nanopartículas Metálicas , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Camundongos , Ouro , Efeitos Tardios da Exposição Pré-Natal/psicologia , Aprendizagem em Labirinto , Cognição
9.
Bioengineering (Basel) ; 10(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106585

RESUMO

Yeast Saccharomyces cerevisiae may be regarded as a cost-effective and environmentally friendly biosorbent for complex effluent treatment. The effect of pH, contact time, temperature, and silver concentration on metal removal from silver-containing synthetic effluents using Saccharomyces cerevisiae was examined. The biosorbent before and after biosorption process was analysed using Fourier-transform infrared spectroscopy, scanning electron microscopy, and neutron activation analysis. Maximum removal of silver ions, which constituted 94-99%, was attained at the pH 3.0, contact time 60 min, and temperature 20 °C. High removal of copper, zinc, and nickel ions (63-100%) was obtained at pH 3.0-6.0. The equilibrium results were described using Langmuir and Freundlich isotherm, while pseudo-first-order and pseudo-second-order models were applied to explain the kinetics of the biosorption. The Langmuir isotherm model and the pseudo-second-order model fitted better experimental data with maximum adsorption capacity in the range of 43.6-108 mg/g. The negative Gibbs energy values pointed at the feasibility and spontaneous character of the biosorption process. The possible mechanisms of metal ions removal were discussed. Saccharomyces cerevisiae have all necessary characteristics to be applied to the development of the technology of silver-containing effluents treatment.

10.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110040

RESUMO

Indium is an extremely important element for industry that is distributed in the Earth's crust at very low concentrations. The recovery of indium by silica SBA-15 and titanosilicate ETS-10 was investigated at different pH levels, temperatures, times of contact and indium concentrations. A maximum removal of indium by ETS-10 was achieved at pH 3.0, while by SBA-15 it was within the pH range of 5.0-6.0. By studying kinetics, the applicability of the Elovich model for the description of indium adsorption on silica SBA-15 was shown, while its sorption on titanosilicate ETS-10 fitted well with the pseudo-first-order model. Langmuir and Freundlich adsorption isotherms were used to explain the equanimity of the sorption process. The Langmuir model showed its applicability for the explanation of the equilibrium data obtained for both sorbents, the maximum sorption capacity obtained using the model constituted 366 mg/g for titanosilicate ETS-10 at pH 3.0, temperature 22 °C and contact time 60 min, and 2036 mg/g for silica SBA-15 at pH 6.0, temperature 22 °C and contact time 60 min. Indium recovery was not dependent on the temperature and the sorption process was spontaneous in nature. The interactions between the indium sulfate structure and surfaces of adsorbents were investigated theoretically using the ORCA quantum chemistry program package. The spent SBA-15 and ETS-10 could be easily regenerated by using 0.01 M HCl and reused with up to 6 cycles of adsorption/desorption with a decrease in the removal efficiency between 4% and 10% for SBA-15 and 5% and 10% for ETS-10, respectively.

11.
Toxics ; 11(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37112530

RESUMO

The dose-dependent effects of single metals (Zn, Ni, and Cu) and their combinations at steady time-actions on the cell viability of the bacteria Shewanella xiamenensis DCB 2-1, isolated from a radionuclide-contaminated area, have been estimated. The accumulation of metals by Shewanella xiamenensis DCB 2-1 in single and multi-metal systems was assessed using the inductively coupled plasma atomic emission spectroscopy. To estimate the response of the bacteria's antioxidant defense system, doses of 20 and 50 mg/L of single studied metals and 20 mg/L of each metal in their combinations (non-toxic doses, determined by the colony-forming viability assay) were used. Emphasis was given to catalase and superoxide dismutase since they form the primary line of defense against heavy metal action and their regulatory circuit of activity is crucial. The effect of metal ions on total thiol content, an indicator of cellular redox homeostasis, in bacterial cells was evaluated. Genome sequencing of Shewanella xiamenensis DCB 2-1 reveals genes responsible for heavy metal tolerance and detoxification, thereby improving understanding of the potential of the bacterial strain for bioremediation.

12.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676589

RESUMO

Selenium nanoparticles are attracting the attention of researchers due to their multiple applications, including medicine. The biosynthesis of selenium nanoparticles has become particularly important due to the environmentally friendly character of the process and special properties of the obtained particles. The possibility of performing the biosynthesis of selenium nanoparticles via the living culture of Arthrospira platensis starting from sodium selenite was studied. The bioaccumulation capacity of the culture, along with changes in the main biochemical parameters of the biomass, the ultrastructural changes in the cells during biosynthesis and the change in the expression of some genes involved in stress response reactions were determined. Protein, lipid and polysaccharide fractions were obtained from the biomass grown in the presence of sodium selenite. The formation of selenium nanoparticles in the protein fraction was demonstrated. Thus, Arthrospira platensis culture can be considered a suitable matrix for the biosynthesis of selenium nanoparticles.

13.
Microorganisms ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363702

RESUMO

Rhenium is a scarce and highly important metal for industry and technology. In the present study, the cyanobacterium Arthrospira platensis (Spirulina) was used to remove rhenium and related elements (Mo and Cu) from mono- and polymetallic synthetic effluents. Metal ions in different concentrations were added to the culture medium on the first, third, and fifth days of biomass growth, and their uptake by the biomass was traced using ICP-AES technique. The accumulation of rhenium in the biomass was dependent on the chemical composition of the effluents, and the highest uptake of 161 mg/kg was achieved in the Re-Cu system. The presence of rhenium, copper, and molybdenum affected the productivity of Spirulina biomass and its biochemical composition (proteins, carbohydrates, lipids, phycobiliproteins, the content of chlorophyll α and ß-carotene). With the growth of biomass in the presence of rhenium or rhenium and molybdenum, a pronounced increase in productivity and protein content was observed. The presence of copper in systems has a negative effect on biomass productivity and biochemical composition. Arthrospira platensis may be of interest as a bioremediator of rhenium-containing effluents of various chemical compositions.

14.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079481

RESUMO

Erbium belongs to rare earth elements critical for industry, especially nuclear technology. Cyanobacteria Arthospira platensis was used for Er(III) removal from wastewater by applying biosorption and bioaccumulation processes. The influence of pH, Er(III) concentration, contact time and temperature on the biosorption capacity of Arthospira platensis was determined. The optimal conditions for Er(III) removal were defined as pH 3.0, time 15 min and temperature 20 °C, when 30 mg/g of Er(III) were removed. The kinetics of the process was better described by the pseudo-first-order model, while equilibrium fitted to the Freundlich model. In bioaccumulation experiments, the uptake capacity of biomass and Er(III) effect on biomass biochemical composition were assessed. It was shown that Er(III) in concentrations 10-30 mg/L did not affect the content of biomass, proteins, carbohydrate and photosynthetic pigments. Its toxicity was expressed by the reduction of the lipids content and growth of the level of malonic dialdehyde. Biomass accumulated 45-78% of Eu(III) present in the cultivation medium. Therefore, Arthospira platensis can be considered as a safe and efficient bioremediator of erbium contaminated environment.

15.
Mar Pollut Bull ; 182: 114025, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963229

RESUMO

To evaluate the prospects of using Baikal endemic sponges as bioindicators of chemical elements pollution, the elemental composition of sponges, water and substrate samples, collected in two areas with different levels of anthropogenic loading of the Baikal Lake, was determined using two analytical techniques. The content of Cl, Ca, V, Zn, As, Se, Ba, Cd, and Cu in the sponges collected in Listvennichny Bay was significantly higher than in Bolshye Koty Bay. The values of the pollution indices point at the slight to moderate pollution of the substrates. According to the bioaccumulation factor values, sponges accumulate mainly Cd, Cu and Br from the substrate, and the main part of the elements from water. The distribution of elements longwise the sponges and their intraspecific variation were evaluated. It was shown that Lubomirskia baikalensis sponges were suitable bioindicators to assess the pollution of Lake Baikal.


Assuntos
Poríferos , Poluentes Químicos da Água , Animais , Cádmio , Biomarcadores Ambientais , Lagos , Água
16.
Microorganisms ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630483

RESUMO

Cyanobacteria-mediated wastewater remediation is an economical, efficient, and eco-friendly technology. The present work deals with the bioaccumulation performance of Arthrospira platensis (Spirulina) grown for four cycles in a medium containing nickel mono- and polymetallic synthetic effluents. The metal uptake by spirulina biomass was evaluated using neutron activation analysis. The effects of effluents on biomass production, protein, and phycobiliprotein content were assessed. Metal accumulation in the biomass depended on the effluent composition and metal ion concentrations. Nickel accumulation in the biomass was directly proportional to its concentration in effluents, and maximum uptake (1310 mg/kg) was attained in the Ni/Cr/Fe system. In the same system, biomass accumulated 110 times more chromium and 4.7 times more iron than control. The highest accumulation of copper (2870 mg/kg) was achieved in the Ni/Cu/Zn/Mo system and zinc (1860 mg/kg)-in the Ni/Cu/Zn/Sr system. In biomass grown in the media loaded with nickel and also chromium, iron, copper, strontium, zinc, and molybdenum, a decrease in productivity (on average by 10%) during the first cycle of cultivation and moderate reduction of protein content (by 15-27%) was observed. The presence of metals in the cultivation media inhibited phycobiliprotein synthesis, especially of phycocyanin, and promoted the synthesis of allophycocyanin. The maximum reduction of phycocyanin content was 77%, and the increase of allophycocyanin content-by 45%. Arthrospira platensis may be deemed as bioremediation of nickel-polluted wastewaters of complex composition.

17.
Arch Environ Contam Toxicol ; 82(3): 355-366, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35266044

RESUMO

The moss biomonitoring technique was used for the assessment of air pollution in the Republic of Moldova, in the framework of the UNECE ICP Vegetation Programme. The content of 11 chemical elements (Al, V, Cr, Fe, Ni, Zn, As, Sb, Cd, Cu, and Pb) was determined by neutron activation analysis and atomic absorption spectrometry in samples collected in spring 2020. Distribution maps were built to identify the most polluted sites. The highest concentrations of elements in mosses were determined in the north-eastern, central, and western parts of the country. The main element associations were identified using factor analysis. Three factors were determined, of which one of mixed geogenic-anthropogenic origin and two of anthropogenic origin. A comparison of the data obtained in 2020 and 2015 showed a significant decrease in the concentrations of Cr, As, Sb, Cd, Pb, and Cu in 2020. The state of the environment was assessed using Contamination Factor and Pollution Load Index values, which characterized it as unpolluted to moderately polluted. Possible air pollution sources in the Republic of Moldova are resuspension of soil particles, agricultural practices, vehicles, industry, and thermal power plants.


Assuntos
Poluentes Atmosféricos , Briófitas , Metais Pesados , Oligoelementos , Poluentes Atmosféricos/análise , Monitoramento Biológico , Monitoramento Ambiental/métodos , Metais Pesados/análise , Moldávia , Oligoelementos/análise
18.
Toxics ; 10(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35324738

RESUMO

Soil and water pollution is a major problem that has a negative impact on ecosystems and human health in particular. In the bioremediation processes, the application of photosynthetic microorganisms, including cyanobacteria, is a direction of action addressed with increasing frequency in the context of further development and improvement of environmentally friendly techniques needed for detoxification of soils and waters polluted with low concentrations of toxic elements, since they pose a challenge for traditional treatment methods. In the present study, the removal of copper and other metal ions from multielement systems by three generations of Nostoc linckia is discussed. Changes in the biochemical composition of the nostoc biomass, which accumulates metal ions, were monitored. Neutron activation analysis was applied to assess Cu, Fe, Ni, and Zn accumulation by biomass, as well as to determine the biochemical composition of biomass after specific biochemical methods were used. The capacity of the accumulation of copper and other metal ions from multi-elemental systems by cyanobacteria Nostoc linckia was high and increased over two cycles of biomass growth in the systems Cu-Fe-Ni and Cu-Fe-Zn and over three cycles in Cu-Fe and Cu-Fe-Ni-Zn systems. It constituted 1720-10,600 µg metal/g depending on the system and cycle of cultivation. The accumulation of Fe, Ni, and Zn also increased over the generations of nostoc. The process of metal accumulation was demonstrated by a significant change in the biomass biochemical composition. Cyanobacteria Nostoc linckia possess a pronounced capacity of copper and other metal ion accumulation from multimetal systems and showed an increased resistance in environments polluted with heavy metals.

19.
Toxics ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202252

RESUMO

For the first time, moss biomonitoring covering the territory of the entire Moscow region, without including Moscow, was performed in 2020. Moss Pleurozium schreberi collected at 156 sampling sites were analyzed using neutron activation analysis and atomic absorption spectrometry. A total of 34 elements were determined in moss samples. Obtained data were compared with the results of the moss surveys performed in the Vladimir and Yaroslavl regions in 2018 and with the data of moss surveys conducted in the Moscow region on a limited number of sampling sites in 2004 and 2014. The Moscow region showed to be more polluted than the Vladimir and Yaroslavl regions. In the the Moscow region, the decrease of the content of the main part of the elements over time was noted. Trace elements emission sources were identified and characterized using factor analysis. Contamination Factor, Pollution Load Index, and Ecological Risk were calculated to assess the level of the region contamination and elements effect on human health. In general, the Moscow region can be characterized as unpolluted to moderately polluted with a low ecological risk of human exposure. The cities satellites around Moscow were determined to experience particular environmental stress, even in the period of the COVID-19 restrictions.

20.
Environ Sci Pollut Res Int ; 29(14): 21049-21066, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34750760

RESUMO

The present work was conducted to evaluate the air quality in terms of inorganic pollutants and toxicity impact using two evergreen tree leaves, Eucalyptus globulus Labill (E. globulus) and Ficus microcarpa L.f., Suppl. Pl. 442 (1782) (F. microcarpa) as biomonitors. Thirty tree leaves and an equal number of co-located soil samples from different regions of Egypt (urban Greater Cairo Metropolitan (GC) and rural Menoufia Governorate (MG)) were collected. The concentrations of 34 and 40 elements were determined using instrumental neutron activation analysis (INNA) and atomic absorption spectrometry (AAS) in tree leaves and soils, respectively. Bivariate and multivariate statistical analyses were implemented. The air pollution was assessed using enrichment factor, pollution load index, potential ecological risk, and risk index. In addition, human and ecotoxicity were evaluated based on the ReCiPe method. The mean concentration values of the obtained elements in tree leave in urban Greater Cairo and rural Menoufia Governorate show that the major elements are slightly higher in F. microcarpa than in E. globulus. Likewise, the mean values of elements in soil from GC and MG show no significant difference except for major elements (Fe, Al, Mg, K, Na, and Ti) in MG. The normalized concentrations of tree leave and soil show that the accumulated elements by F. macrocarpa are slightly higher than in E. globulus in GC and MG. While in terms of the investigated area, the concentrations of elements in MG are considerably higher than in GC. Pollution load index (PLI) spatial distribution over investigated areas showed that despite high population density, heavy traffic, and urban pollution, the Cairo samples exhibit significantly lower values as compared to those from Menoufia, which is most likely due to the uncontrolled industrial and domestic waste disposal outside Cairo. Potential ecological risk (PER) was significant for As in soil and for As and Cd in tree species. Human toxicity shows higher values in urban locations. Contrariwise, in the terrestrial ecotoxicity aspect, the rural locations are much higher than in urban ones.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Metais Pesados , Poluentes do Solo , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Egito , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...